A SMOOTHING NEWTON METHOD FOR THE BOUNDARY-VALUED ODEs
نویسنده
چکیده
In this thesis, we focus on the Nonsmooth Boundary-valued ODEs, whose right-hand functions are parameterized by algebraic variables that solve the initial-valuedproblems and the nonsmooth equations. Based on the idea of the initial value tech-niques used in traditional ODEs, a smoothing Newton method originated from theQSZ method is applied to the nonmsmooth dynamic systems. Most significantly,we address a reformulation of the nonsmooth ODEs to make them applicable tothe smoothing algorithm and facilitate the convergence analysis. Especially, thedifferential variational inequalities are served as the special case for discussion.
منابع مشابه
An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملA Novel Finite Difference Method of Order Three for the Third Order Boundary Value Problem in ODEs
In this article we have developed third order exact finite difference method for the numerical solution of third order boundary value problems. We constructed our numerical technique without change in structure of the coefficient matrix of the second-order method in cite{Pand}. We have discussed convergence of the proposed method. Numerical experiments on model test problems approves the simply...
متن کاملExact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs
The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...
متن کاملA New Newton-Type Method with Third-Order for Solving Systems of Nonlinear Equations
In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of n...
متن کاملA Smoothing Technique for the Minimum Norm Solution of Absolute Value Equation
One of the issues that has been considered by the researchers in terms of theory and practice is the problem of finding minimum norm solution. In fact, in general, absolute value equation may have infinitely many solutions. In such cases, the best and most natural choice is the solution with the minimum norm. In this paper, the minimum norm-1 solution of absolute value equation is investigated. ...
متن کامل